图书章节:
[1] Xuan Zhao, and Zhi-zhong Sun, Part 1. Time-fractional derivatives, in Handbook of Fractional Calculus with Applications Volume 3: Numerical Methods edited by Jose Antonio Tenreiro Machado, pp. 34-59, De Gruyter, 2019.
期刊论文:
[21] 邱敬怡,赵璇*,基于 SVR-BP 算法的江苏省空气质量指数预测,南通大学学报(自然科学版),2020 19(1): 42-47.
[20] Xuan Zhao∗, Meichen Song, Anqi Liu, Yiming Wang, Tong Wang, Jinde Cao∗, Data-driven temporal-spatial model for the prediction of AQI in Nanjing, Journal of Artificial Intelligence and Soft Computing Research, 10 (2020) 255-270.
[19]Shuying Zhai, Dongling Wang, Zhifeng Weng, Xuan Zhao*, Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrodinger equation,Journal on Scientific Computing, 81 (2019) 965-989.
[18] Chengdai Huang, Xuan Zhao, Xuehai Wang, Zhengxin Wang, Min Xiao, Jinde Cao, Disparate delays-induced bifurcations in a fractional-order neural network, Journal of the Franklin Institute 356 (2019) 2825–2846. (ESI高被引论文)
[17] Chengdai Huang, Xiaobing Nie, Xuan Zhao, Qiankun Song, Zhengwen Tu, Min Xiao, Jinde Cao, Novel bifurcation results for a delayed fractional-order quaternion-valued neural network, Neural Networks 117 (2019) 67–93.
[16] Hong Sun, Xuan Zhao, Zhi-zhong Sun, The temproal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation,Journal on Scientific Computing, (2019) 78:467–498.
[15] Beichuan Deng, Zhimin Zhang, Xuan Zhao, Superconvergence points for the spectral interpolation of Riesz fractional derivatives,Journal on Scientific Computing,81 (2019) 1577-1601.
[14] Yue Zhao, Weiping Bu, Xuan Zhao, Yifa Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation,Journal of Computational Physics, 350 (2017), 117-135.
[13] Xiaoshuai Ding, Jinde Cao, Xuan Zhao, and Fuad E. Alsaadi, Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes, Proc. R. Soc. A 473: 20170322.
[12] Xiaoshuai Ding, Jinde Cao, Xuan Zhao, Fuad E. Alsaadi, Finite-time stability of fractional-order complex-valued Neural Networks with time delays, Neural Process Lett (2017) 46:561–580.
[11] Xuan Zhao*, Xiaozhe Hu, Wei Cai, George E. Karniadakis, Adaptive Finite element method for fractional differential equations using Hierarchical matrices,Comput. Methods Appl. Mech. Engrg, 325 (2017) 56–76 .
[10] Xuan Zhao, Zhimin Zhang, Superconvergence points of fractional spectral interpolation, SIAM Journal on Scientific Computing, 38 (2016) A598-A614.
[9] Xuan Zhao*, Zhi-zhong Sun, George Em Karniadakis, Second order approximations for variable order fractional derivatives: Algorithms and applications, Journal of Computational Physics, 293 (2015) 184–200.
[8] Xuan Zhao, Zhi-zhong Sun, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, Journal of Scientific Computing, 62 (2015) 747-771.(ESI高被引论文)
[7] Xuan Zhao*, Zhi-zhong Sun, Zhao-peng Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36-6 (2014), pp. A2865-A2886.(ESI高被引论文)
[6] Haiyan Cao, Zhi-zhong Sun, Xuan Zhao, A second-order three-level difference scheme for a Magneto-Thermo-Elasticity Model, Adv. Appl. Math. Mech., 6 (2014), 281-298.
[5] Jin-cheng Ren, Zhi-zhong Sun, Xuan Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 232 (2013), 456-467.
[4] Xuan Zhao*, Qinwu Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Applied Mathematical Modelling, 38 (2014) 3848-3859.
[3] Juan Li, Zhi-zhong Sun, Xuan Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci China Math, 55 (2012), 805-826.
[2]Ya-nan Zhang, Zhi-zhong Sun, Xuan Zhao, Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation, SIAM Journal on Numerical Analysis, 50 ( 2012) , 1535-1555. (ESI高被引论文)
[1]Xuan Zhao, Zhi-zhong Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 6061-6074.